Dark Sector Searches

LAr1-ND Collaboration Meeting Wednesday, September 17th 2014

Mina Himwich, Jonathan Asaadi, Brooke Russell

In This Talk

 Motivate a signature based search for dark sector phenomena in LAr1-ND

 LArTPC technology allows us to search for topology signatures in a "quasi"-model independent way

 Significant flux impinged on a short baseline detector provides improved sensitivity

Leptophobic Dark Matter

- Vector boson is a mediator between dark sector and SM that couples dominantly to quarks
- Production of vector bosons through:
 - Production of secondary hadrons followed by decay (e.g. pseudoscalar meson decay, scalar meson-vector boson mixing) γ

Direct QCD production

DM Neutral Current Elastic Scattering at Fixed Target Neutrino Beam Experiments

MiniBooNE beam dump search

http://www.fnal.gov/directorate/program_planning/Jan2014PACPublic/MB_Request_2013_v2.pdf

$$\pi^0, \eta \longrightarrow V_B \gamma \longrightarrow \chi \bar{\chi} \gamma$$

Vector Boson Visible Decay

If
$$2m_{\chi} < m_{V_B}$$

$$V_B \to \chi \bar{\chi}$$

If
$$2m_{\chi} > m_{V_B}$$

• For $m_{V_B} < m_{\pi^0}$

$$V_B \rightarrow \pi^0 + \gamma \rightarrow 3\gamma$$

$$V_B \rightarrow e^+e^-$$

 \bullet For $m_{V_B} > m_{\pi^0}$

$$V_B o \pi^0 + \gamma o 3\gamma$$

Preliminary Monte Carlo Analysis

Objective: simulate vector boson production distributions in LAr1-ND

- Using MiniBooNE BNB MC, momentum and angular distribution of π^0 s produced in p-Be target interactions were simulated
- Using estimates of the production cross sections , π^0 s were selectively replaced with vector bosons
- Vector boson event rate comprises vector bosons possessing trajectories that intercept the LAr1-ND detector

Vector Boson Distribution Angles

Momentum Distribution

Expected Signature in LAr1-ND

 $V_B \rightarrow \pi^0 + \gamma$ Topology: 3 photons, which we back to a common point with no activity (no hadronic interaction) **Topology:** 3 photons, which we can trace back to a common point with no vertex

Background Analysis: Overview

Study the three-photon channel in existing MCTruth

· Goals:

- Identify the types of processes that fake signal
- Quantify their rate
- Characterize their kinematics

· Approach:

- Preliminary spatial cut
- Geometric / topological search
- Investigate any differences in beam and cosmic sources
- Cut based on photon energy and physical distribution

Process Identification

Table 1: Potential Backgrounds (after spatial cut)

Neutrino Source	Booster Beam	Cosmic
Total Number of Events	8200	4600
Total Number of Events with ≥ 3 Photons	6624	3121

Table 2: Characterization of Beam Events with ≥ 3 Photons

Event Type	Number of Events	As a Percentage of ≥ 3 Photon Events
Nuclear Scattering	5491	83%
Neutral Pion Decay	1085	16%
Primary Photon(s)	18	< 1%
Other	30	< 1%

Table 3: Characterization of Cosmic Events with ≥ 3 Photons

Event Type	Number of Events	As a Percentage of ≥ 3 Photon Events
Nuclear Scattering	2533	81%
Neutral Pion Decay	60	2%
Primary Photon(s)	188	6%
Other	340	11%

Dalitz Decay

- Decay mode:≈1.198 ± 0.032%
- Leading order contribution to amplitude given by electron-positron pair produced by a single photon (Dalitz pair)
- Necessitates further analysis of vector boson kinematics

Next Steps

 Continued development of MC signal/ background

Expand search to additional signal channels

Event reconstruction

Reporting progress in LAr1-ND analysis group